heated very cautiously in an atmosphere of nitrogen, the yellow crystals sublime and reform in a cooler portion of the tube. Upon stronger heating, some disproportionation occurs and white crystals of chromium hexacarbonyl are observed further along the tube. Finally, complete decomposition results in the deposition of a metallic mirror of cadmium and chromium.

Acknowledgment.—We are indebted to Dr. Francis J. Norton, of the Research Laboratory of the General Electric Company, for preparing and interpreting mass spectra of our samples of chromium carbonyl, chromium carbonyl hydride, and products produced by spontaneous decomposition of the hydride upon standing at room temperatures.

DEPARTMENT OF CHEMISTRY YALE UNIVERSITY
NEW HAVEN, CONNECTICUT

RECEIVED JUNE 8, 1951

Preparation of Some Sulfonium Salts as Possible Anticancer Agents

By Henry A. Rutter, Jr. 1

The preparation of sulfonium halides as possible anticancer agents was prompted by the structural similarity between quadrivalent sulfonium compounds and quaternary ammonium derivatives.

Hartwell and Kornberg² prepared several aralkyl quaternary ammonium halides of the type I which had anticancer activity.

$$\left[Y-C \left\langle \begin{array}{c} C=C \\ C-C \end{array} \right\rangle C-CO-CH_2N^* \right]^+X^-$$

The nitrogen was contained in a heterocyclic ring such as pyridine or α -picoline.

In the present investigation a series of aralkyl sulfonium bromides of the type II were prepared by reaction of the appropriate phenacyl bromide with dialkyl sulfides according to the method of Bost and Schultze³ for the preparation of *p*-phenylphenacyl sulfonium bromides.

$$\left[\begin{array}{c} X-C \\ C-C \end{array}\right] C-CO-CH_2S \\ R' \\ R' \\ Br^{-}$$

where X is H, CH_3 , C_6H_5 , Br, Cl and CH_3O and R and R' are alkyl groups. In addition one metanitro derivative has been prepared.

These compounds are listed in Table I.

A preliminary report indicates that six of the phenacyl sulfonium bromides are somewhat effective as tumor necrotizing agents at dosages of

- (1) Taken from thesis submitted by Henry A. Rutter, Jr., in partial fulfillment of the requirements for the degree of Ph.D. at The Division of Chemistry, Graduate School, Georgetown University, Washington, D. C.
- (2) J. L. Hartwell and S. R. L. Kornberg, This Journal, 68, 868 (1946)
 - (3) R. W. Bost and H. C. Schultze, ibid., 64, 1165 (1942).

TABLE I

PHENACYL AND SUBSTITUTED PHENACYL SULFONIUM BROWNESS

$$\left[\begin{array}{c} C = C \\ C - C \end{array}\right] C - CO - CH_2S \begin{bmatrix} R' \\ R \end{bmatrix}^{+} Br^{-}$$

				Yield,	М.р., С.	$\%^a$	
\mathbf{x}	R	R'	Formula	%	(uncor.)	Calcd.	Found
H	C ₈ H ₇	C ₃ H ₇	C14H21OSBr	13	93-94	25.23	25.20
H	C ₄ H ₉	C ₄ H ₉	C16H25OSBr	23	88-89	23.18	22.90
H	C_4H_9	C_2H_b	C14H21OSBr	63	103-104	25.23	25.05
CH:	CH:	CH ₈	CitHisOSBr	51	112	29.04	28.71
CH ₃	C ₈ H ₇	C ₈ H ₇	C ₁₅ H ₂₅ OSBr	12	98-99	24.12	24.41
CH_{3}	C_4H_9	C_4H_9	C ₁₇ H ₂₇ OSBr	28	99-100	22.24	21.99
CH ₂	C_4H_8	C ₂ H ₅	C15H26OSBr	12	97	24.12	23.74
C ₆ H ₅	C_2H_3	C ₂ H ₅	C ₁₈ H ₂₁ OSBr	31	123-124	21.9	21.47
C ₆ H ₅	C ₈ H ₇	C ₃ H ₇	C20H25OSBr	25	113-114	20.37	20.10
C ₆ H ₅	C_4H_9	C ₂ H ₃	C20H25OSBr	14	96-97	20.37	20.21
Br	CH ₃	CH3	C ₁₀ H ₁₂ OSBr ₂	53	127	23.52	23.31
Br	C ₂ H ₄	C ₂ H ₅	C ₁₂ H ₁₆ OSBr ₂	53	119-120	21.73	21.40
Br	C ₃ H ₇	C ₂ H ₇	C14H20OSBr2	49	107-108	20.20	19.9
C1	CH ₃	CH:	C ₁₀ H ₁₂ OSBrC1	27	128-129	27.0 3	27.14
C1	C ₈ H ₇	C ₈ H ₇	C14H20OSBrC1	29	111	22.72	22.85
C1	C ₄ H ₉	C_4H_9	C16H24OSBrC1	21	99	21.04	20.88
C1	C_4H_9	C ₂ H ₅	C14H20OSBrC1	34	102-103	22.72	22.48
CH ₂ O	C ₂ H ₅	C ₂ H ₅	C11H19O2SBr	13	106-107	25.03	24.71
CH ₂ O	C ₈ H ₇	C ₈ H ₇	C15H22O2SBr	15	100	23.01	22.62
m-NO2	C ₂ H ₇	C ₂ H ₇	C14H20NO8SBr	6	97-98	22.06	21.71

^a Mohr analysis, average of two.

150 to 250 mg. per kilogram of body weight against Sarcoma 37 in mice.⁴

Grateful acknowledgment is made to Dr. M. X. Sullivan for his advice and encouragement during this investigation.

(4) Acknowledgment is made to Dr. Jonathan L. Hartwell, National Cancer Institute, for the report on the tumor necrotizing activity of the compounds. The final report dealing with the biological activity of these compounds will be made later.

Chemo-Medical Research Institute
Georgetown University
Washington, D. C. Received June 25, 1951

Thiocarbamates. III. 1 Aryl Thiocarbamates from Aryl Thiocyanates

By R. RIEMSCHNEIDER, F. WOJAHN AND G. ORLICK²

As reported elsewhere, ^{1,8} the action of concentrated sulfuric acid followed by treatment with ice-water serves, in most cases, to transform aryl thiocyanates into the corresponding thiocarbamates

$$ArSCN \xrightarrow{+H_2O} ArSC \nearrow{OH} \xrightarrow{OH} ArSCO \cdot NH_2$$

The reaction is of preparative as well as of analytical value. We have found that the reaction is superior to older procedures for the preparation of thiocarbamates⁴ with respect to general applicability,

- (1) R. Riemschneider, Paper I, Mitt. physiol. chem. Inst., R 30. Feb., 1949; Paper II, Chimica e industria (Milan), 23, 483 (1951) (presented Sept. 19, 1950, before the VI National Congress of Pure and Applied Chemistry, Milan).
- (2) Address of the authors: Hohenzollernplatz 1, Berlin-Nikolassee, (3) Pharmasie, 4, 460 (1949); Chim. et Ind., 64, Sonderheft, Sept., 99 (1950); Pharm. Zentralhalle, 89, 108 (1950); further references may be found in Paper I of this series.¹
- (4) H. L. Wheeler and B. Barnes, Am. Chem. J., 22, 141 (1899);
 A. Fleischer, Ber., 9, 988 (1876);
 N. A. Langlet, ibid., 24, 3848 (1891);
 B. Hohnberg, ibid., 47, 159 (1914);
 A. Knorr, ibid., 49, 1735 (1916);
 E. Billmann and J. Bjerrum, ibid., 50, 503 (1917);
 M. H. Rivier, Bull. soc. chim., [4] 1, 733 (1907);
 R. Conrad and F. Salomon, J. prakt.